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TIME-RESOLVED PHERMEX IMAGE RESTORATIONS CONSTRAINED

WITH AN ADDITIONAL MULTIPLY-EXPOSED IMAGE

by

R. P. Kruger
J. R. Breedlove, Jr.

H. J. Trussell

ABSTRACT

There are a number of possible industrial and scientific ap-
plications of nanosecond cineradiographs. Although the technology
exists to produce closely spaced pulses of x rays for this appli-
cation, the quality of the time-resolved radiographs is severely
limited. The limitations arise from the necessity of using a
fluorescent screen to convert the transmitted x rays to light and
then using electro-optical imaging systems to gate and to record

~the images with conventional high-speed cameras. It has been pro-
—_ L posed that in addition to the time-resolved images, a conventional
~%; multiply-exposed radiograph be obtained. This report uses both.-~= N
—~m— PHERMEX and conventional photographic simulations to demonstrate
-~!” that the additional information supplied by the multiply-exposed
is
A— radiograph can be used to improve the quality of digital image
‘~~ i restorations of the time-resolved pictures over what COU1d be$= ,
_;—m ~
===025—

achieved with the degraded images alone.
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I. INTRODUCTION

Recent studies related to improving PHERMEX radiography raised an inter-

esting image-processing question. Could a multiply-exposed, but otherwise un-

degraded, image be used to improve the quality of digital restorations of de-

graded versions of the individual scenes,in the multiple image? Since the mul-

tiple exposure is additional information, the intuitive answer is “yes!” We

describe an algorithm to use the additional information in the multiple exposure

to improve the restorations beyond those possible with only the degraded images

and knowledge of the degrading function and image statistics.



One rarely finds an imaging experiment in which separate low-quality pic-

tures are obtained along with a high-quality multiple exposure. PHERMEX is a

30-MeV electron accelerator used for flash (i.e., stop-action) radiography of

rapidly moving objects. Advances in accelerator technology have made it possible

to produce numbers of intense pulses of x rays which are closely spaced in time.

With this capability ultra-high-speed cineradiography will be possible. Itwill

be possible to produce at least three 40-ns bursts of radiation over a time span

of between 4 and 1000 us. Each radiation pulse would have an intensity of

100 R.

In a single-pulse flash radiography the usual image recording medium is

film contained in special cassettes. Because of the size and weight of these

cassettes, the film cannot be changed between the pulses. To take advantage of

the multiple pulse capability being developed for the PHERMEX Facility, it was

necessary to develop techniques for recording numbers of x-ray images closely

spaced in time. The approach chosen was to convert the x-ray images into light

images using a fluorescent screen. Light from the fluorescent screen is then

recorded using a conventional high-speed, electronically intensified framing

camera. Since the electro-optical camera imagery was poorer than conventional

radiographs, digital image restoration was needed. The penetrating nature of

x rays makes it possible to place a conventional x-ray film cassette between the

object and the fluorescent screen. The image recorded on such a film would be

the superposition of radiographs from each of the radiation pulses. Each com-

ponent image would have the clarity of conventional PHERMEX radiography. The

possibility of obtaining this additional image for each series of time-resolved

radiographs motivated this study.

In this report we will present a model of the radiographic experiment from

which simulations are derived. The simulations use both conventional photographs

and actual PHERMEX simulations. An algorithm for restoration of the degraded

images constrained by the multiply-explosed image will be derived. Experimental

restorations of the simulated imagery will be presented. The work demonstrates

the advantage of using the multiple exposure in the restoration scheme.

II. IMAGEMODEL ANDSIMULATIONS

The degraded, time-resolved images are represented as the convolution of

the undegraded images with a point-spread function. The n~ise is considered to

be additive and signal-independent. Using matrix notation the degraded image

.

,
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is given by the expression

9i ‘H fi+nO’ ‘=1’2’””” N
(1)

where gi represents the degraded image and fi represents the input image. H is

obtained from ’the point-spread function and n is the noise term. The multiple

exposure is given by the expression

N. .

z‘t4= ‘i “
(2)

i=1

For ordinary light photography the quantities fi in Eq. (2) would be light in-

tensities. For high-energy x rays recorded without fluorescent intensification

screens the film density of the radiograph is proportional to the incident radia-

tion intensity.2 For x rays the fi’s in Eq. (2) could be film densities.

We initially used three conventional photographs of similar objects with

large regions of relatively high density to simulate the fi’s. Figure 1 shows

these three digitized images. The simulated point-spread function was a Gaussian

with a standard deviation of 1.4 pixels. The noise function was a white, zero-

mean Gaussian with a standard deviation of 0.04 density units. The signal-to-

noise ratio was 20 dB. Figure 2 shows the simulation of one of the degraded

images. Our motivation in this first study was to confirm the theoretical con-

siderations to be developed using known and controllable degradations. Once

this was done, the techniques were used to restore simulated PHERMEX images for

which the degrading process can only be estimated.

III. RESTORATION ALGORITHM

One approach to restoring the degraded gi’s is to seek an estimate ;i which

will minimize

N

x( 9i -H;i)T(gi -H;i) ,
i=l

(3)

subject to the constraint

‘M = 2! ?. .1
i=l

(4)
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In these equations N is the number of degraded images. The solution is obtained

using Lagrange multipliers. Minimize the quantity

i=l

with respect to the ;i’s. AT is a

carrying out the minimization of s

(5)

row vector of N Lagrange multipliers. After

and assuming that H-1 exists, the solution is

[

N

fi ‘1=:H-lgi +; fM- H-lgj .
j#i=l

(6)

While the existence of H
-1

could be questioned, Eq. (6) is very easy to derive

and analyze. This expression for ?i is the essence of this paper. The solution

is very satisfying intuitively. If N were 1, then the undegraded “multiple”

image is the solution. As N increases, our ability to unscramble the multiple

image decreases. Therefore, we rely more on the straightforward restoration for

the solution. One would expect that in regions where the restorations of the

other images are poor, residuals will remain in the second term. These residuals

appear as “ghosts” in the constrained restorations. These are particularly evi-

dent in high-contrast regions of the images. Ghosts will be unavoidable if im-

perfect global processing is used.

The following derivations show that the form of Eq. (6) holds for other

restoration

~(gi) and

A

schemes. Let ;i be a linear combination of some arbitrary restoration

the difference [fM-~~(gi )]. Let Eq. (4) bea constraint.

j#i

L j+i

Sum the ?i’s to obtain

N N

(7)

(8)

consequently, B = l/N and a = (N-1)/N.
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Now consider the restoration which minimizes the expected value of the

total error between the fi’s and the ;i’s.

{

N

Minimize:
}

E ~[fi - fi]T[fi -Fi] ,

i=l

(9a)

where E{...} is the expected value. Substituting Eq. (7) into Eq. (9a) and

assuming ~(gi) = Wgi, where W is a linear operator, one obtains the expression

H
N 2

Minimize: E fi - y Wgi
~ 11-*fM+; Wgi .

j+i=l

(9b)

If one expands the terms inside the sununation,sums each term, differentiates

with respect to W, and sets the result equal to zero, Eq. (9b) becomes

N

+2(~~’2~w9igiT+~fM~g/
i=l .=

N
-~W ~9i Zgi -2(:;1:’ ~ 9T

‘M i
i=1 j#l i=1

‘*w~(~gj)(~gjT))=O .
i=l j#l “

(10)

N.

Multiplying Eq. (10) by N/2, factoring out W, and using the shorthand gM = giE

one finds
i=1

H
N

E W ~gigiT ‘]l=E@ig:-ifM9;\ -- ~gMgM
i=l

(11)
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Using Eq. (1) and assuming E{fnT} = O, then E{figiT} = E{fifiTHT}. With the

usual assumption that the images are independent and are drawn from a zero mean

ensemble, then E{fifjT} = O. Ifergodicity holds, E{fifiT} = E{fjfjT}. There-

fore, subscripts can be dropped. W, the restoration filter that produces the

minimum mean square error, is given by

E{ffT}HT Rf HT
w=

H E{ffT}HT + E{nnT}= H RfHT + Rn ‘
(12)

where Rf is the covariance matrix of f and Rn is the estimated noise covariance

matrix. This is the standard Wiener filter often used in image processing. The

filter which minimizes the mean square error for the N images with the constraint

is the filter which minimizes the mean square error for each image separately.

As mentioned earlier, the three images shown in Fig. 1 were identically

degraded to form the gi images. Wiener restorations R(gi) and constrained res-

torations ~i based on unconstrained Wiener restorations were produced. Table I
gives the mean square error between these two restorations and the original un-

degraded images fi. Figures 3 and 4 show examples of Wiener and constrained res-

torations. The constrained outputs are superior in spite of the noticeable

“ghost” residual images.

The results of R(gi) and ~i for Wiener, power spectrum equalization (PSE),

and linear Maximum a Posteriori (MAP) restoration approaches will be used in the

following sections using simulated PHERMEX radiographs.

well the constrained restoration methods work on actual

IV. PHERMEX STUDIES

A. Spatial Calibration

Our goal is to see how

radiographic data.

In the previous section, the degraded images gi were computer-generated

from undegraded images fi> and the superposition image fM was the exact linear

sum of fi images (undegraded gi images). By making these simplifications, several

problems were avoided. First,

N
w

x‘M= ‘i ‘
(13)

i=1



as was mentioned earlier. Second, since

9i =Hfi+n , (14)

the degrading process was well controlled and linear. Third, since fM was the

linear superposition of the fi images, and gi was a linear modification of f.,
1

the restored images R(gi) were of the same density range, digital resolution,

and sampled identically to fM. Lastly, it was possible to use the mean square

error criterion to verify both the previously presented theory and the computer

restoration algorithm.

The next logical step was to analyze actual PHERMEX-based simulations. To

these ends four images were supplied to us by the PHERMEX group (M-2). Three of

these were simulated time-resolved PHERMEX images, which were obtained by radio-

graphing three spherical models of different radii through a time-gating electro-

optic system. A fourth image consisted of a 36- by 53-cm PHERMEX superposition

radiograph containing a triple exposure of these three models. Before Eq. (7)

can be successfully applied to these radiographs, they have to be both spatially

registered and densitometrically calibrated.

The three time-resolved images were scanned on the PDS microdensitometer

using a 20-pm aperture. This resulted in”a 1270 by 1270 image. The full-size

multiple-exposure radiograph was digitized to 1250 by 1250 pixels using a 200-pm

aperture. These raw images were not spatially registered and magnification of

the full-size digitized radiograph differed from that of the time-resolved images.

The density ranges were different, and no registration marks were available.

It was decided to use a previously developed circle-detection algorithm3

to superimpose the centers of the individual spheres in the digitized time-

resolved images. An example of the use of this algorithm is shown in Figs. 5a

and 5b for two of the three time-resolved images. The superimposed circle is the

best least squares estimate of the maximum chord length through the spherical

shell. The spatial centroids of each image were also estimated. A similar pro-

cess was undertaken for the superimposed image fM as shown in Fig. 5c. Once the

relative spatial centroids and radii for the four images were computed, they

were translated to a common spatial center, and bilinear spatial interpolation

was used to correct for magnification differences. Figures 6a and b show the

computer superposition of the three time-resolved images and the triple-exposed

image after centering and correcting for magnification differences.

7



One can see from the clarity of the grid pattern that the spatial regis-

tration is successful. The last step in the calibration process is yet to be

undertaken. One should note the marked density differences between Figs. 6a and

b. If Eq. (7) is to be successfully applied (i.e., ghost images resulting from

the difference term minimized), fM must reflect the same density range as

~~(gi). Itisour intention toapproximately mapthedensities present infM

into those exhibited by k ~(9i)0

to restore the time-resolved images

B. Density Calibration

This density-modified fM will then be used

as indicated in Eq. (7).

In the absence of a densitometrically calibrated step wedge on each gi and

fM, the next best procedure involves the formation of a two-dimensional histogram

of image densities. Figure 7 shows such a two-dimensional histogram. In this
2

case the ordinate

scissa represents

gray-scale values

ping shown in Fig.

represents the summed image densities of ~~(gi) and the ab-

i=l

‘M”
The darker the node, the greater the number of coincident

between the two images. A piecewise linear single-valued map-

8 was passed through these major nodes to provide an approxi-

mate density mapping between ~~(gi) and fM. The density matched ‘M was then

used in the constrained restorations to follow. Figure 9 shows a split-screen

representation of the remapped fM and ~(gi). Appropriate visual defocus should

convince one that the mapping is approximately correct. The diffuse nature of

the histogram nodes is indicative of image noise as well as spatially variant

densities. That is, PHERMEX beam misalignment caused spatially dependent density

differences between the ideally spherical objects in the scene.

Several unconstrained restoration approaches were undertaken. Conventional

Wiener restorations were very poor, because Wiener filters react strongly to

high levels of image noise. These high noise levels produce substantial roll-

offs in the filters at higher frequencies that are dominated by noise. Wiener

restorations of these images appear blurred. More aggressive restoration tech-

niques were needed. These will be discussed below. Our restoration experi-

ments have also shown that the noise effects (n) dominated the blur effects (H)

in the electro-optic system images.

.

t
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Power Spectrum Equalization

Pf, and Pgi be the power spectrum

co;strain the restoration filter

will equal that of fi. Thus,

[1‘fi
1/2

Iw] = ~ .
9i

(PSE) makes the following assumption.4 Let

of fi and gi, respectively. The task is to

W such that the power spectrum of~(gi)

(15)

In general, Pfi is unknown. However, the ergodicity condition can be used to

permit the estimation of the power spectrum Pf. from a scene that is considered

to be a member of the statistical ensemble to ~hich gi belongs. In the present

case Pf of the less noisy superposition image is used as the prototype for each

vspectra equalization filter. Figure 10 shows two of the three original gi

images. Figure 11 shows the resultant ;i constrained restorations using PSE.

As a final approach,linear Maximum a Posteriori (MAP) restoration was

undertaken.5 The general form of the linear MAP restoration is given in Eq. (16).

%h)=(Rf-’+HTRn-’H(HTRnTRn-’g+ Rf-’~) , (16)

where Rf
-1

and Rn-1 are inverse covariance matrices, and ~ is the mean vector

of f. If ; = O, one can see that this restoration is identical to the Wiener

restoration of Eq. (12).

In practice, it has been shown that the covariance matrices can be well-

approximated by scalars, that is, Rf = of21 and Rn = an21, where I is the identity

matrix. The noise variance, CYn2, is easily estimated. The variance of the solu-

tion from the mean ; is implicitly derived from the residual image, r = g - Hf,

as shown in Ref. 5. The remaining unknown parameter ; is usually approximated by

the degraded image g itself. Experimental results have shown that the linear

MAP filter gives results comparable to the Wiener filter with less a priori

information. This filter is also less sensitive to perturbation of the estimated

parameters than

images shown in
.

the Wiener filter. Figure 12 shows the MAP restoration of the

Fig. 10.
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v. CONCLUSIONS

In general, the results of Figs. 11 and 12 appear”to be a mixed blessing.

While it can be argued that the true edges appear more sharply defined, the re-

sidual “ghost” edges remain visible. This is partially a result of inaccurate

or incomplete image subtraction [see Eq. (7)] due to the imprecision of the den-

sity remapping of fM, and also the inability of ~(gi) restorations to match

the edge characteristics of fM. In observing the results, one is led to the con-

clusion that the latter reason dominates the former. It is, however, suggested

that future work in this area include spatial registration marks on all films

and some sort of physical density wedge phantom exposed with the films. In

addition, attempts to minimize beam misalignment should be introduced in order

to reduce spatial dependencies in the density remapping phase.
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Table I.

Comparison of Mean Square Errors
for Wiener and Constrained Restoration

‘sE=~kt Ifij-;ijl’o
i=l j=l

Image Mean Square Error
Number Wiener Constrained

1 9.6x 10-3 5.OX 10-3

2 8.OX 10-3 4.6x 10-3

3 7.2 X 10-3 3.8 X 10-3
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Fig. 1. Three undegraded original images.
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Fig. 2. Example of gi noisy and defocused image.

Fig. 3. Wiener restoration~(gi) Fig. 4. Constrained restoration ;i
of image in Fig. 2. corresponding to Figs. 2

and 3.
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Fig. 5a. Circle detection of
intermediate-sized
sphere on g2 image.

Fig. 5b. Circle detection of
large-sphere image g3.

Fig. 5c. Circle detection of small-
sized sphere on f~q.

#
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Fig. 6a. Superposition image fM
prior to density
remapping.
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Fig. 6b. Superposition image Xgi.

B

Fig. 7. Two-dimensional histogram
abscissa (fM), ordinate

[~a(gi)l.

Fig. 8. Piecewise linear mapping
corresponding to Fig. 7.
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Fig. 9. Split screen image of density
remapped fM and Z(gi).

Fig. 10. TWO of three degraded images (91,92).
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Fig. 11. Constrained restorations ;I and ;2 usina PSE.
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Fig. 12. Constrained restoration ~1 and ?2 using MAP.
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